Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Direct perception, as part of the ecological approach to perception, defines a relationship between an organism and their environment that is specified by lawful information. Researchers can apply the ecological approach to eXtended Reality (XR) work to obtain a richer understanding of users’ perception-action coordination in novel virtual settings. To encourage widespread adoption of this theoretical framework, this methodological paper introduces four major concepts from the ecological approach that are highly relevant to XR applications. We also provide an overview of existing literature to illustrate how those concepts may be used to inform and test their designs. These elements include the study of calibration and attunement, affordances, action based responses, and intrinsic scaling for measurements. The goal of this work is to increase awareness of the value of the ecological approach, and to provide a practical, evidence-based reference for researchers interested in applying these techniques in XR research.more » « lessFree, publicly-accessible full text available August 8, 2026
-
Research has shown that environmental cues affect long-term memory and spatial cognition, but there is still a lack of understanding of the exact characteristics that produce these effects. We conducted a virtual reality (VR) within-subjects repeated measures study on 51 participants to test color congruency. Participants saw and studied 20 objects, then completed object recall and placement tasks in a recall room with a congruent or incongruent color. The objective and subjective data we gathered suggest that congruent color conditions influenced long-term memory and speed for recalled objects. Object size was also shown to influence spatial cognition and long-term memory.more » « less
-
Active exploration in virtual reality (VR) involves users navigating immersive virtual environments, going from one place to another. While navigating, users often engage in secondary tasks that require attentional resources, as in the case of distracted driving. Inspired by research generally studying the effects of task demands on cybersickness (CS), we investigated how the attentional demands specifically associated with secondary tasks performed during exploration affect CS. Downstream of this, we studied how increased attentional demands from secondary tasks affect spatial memory and navigational performance. We discuss the results of a multi-factorial between-subjects study, manipulating a secondary task's demand across two levels and studying its effects on CS in two different sickness-inducing levels of an exploration experience. The secondary task's demand was manipulated by parametrically varying n in an aural n-back working memory task and the provocativeness of the experience was manipulated by varying how frequently users experienced a yaw-rotational reorientation effect during the exploration. Results revealed that increases in the secondary task's demand increased sickness levels, also resulting in a higher temporal onset rate, especially when the experience was not already highly sickening. Increased attentional demand from the secondary task also vitiated navigational performance and spatial memory. Overall, increased demands from secondary tasks performed during navigation produce deleterious effects on the VR experience.more » « less
-
Mixed reality (MR) interactions feature users interacting with a combination of virtual and physical components. Inspired by research investigating aspects associated with near-field interactions in augmented and virtual reality (AR & VR), we investigated how avatarization, the physicality of the interacting components, and the interaction technique used to manipulate a virtual object affected performance and perceptions of user experience in a mixed reality fundamentals of laparoscopic peg-transfer task wherein users had to transfer a virtual ring from one peg to another for a number of trials. We employed a 3 (Physicality of pegs) X 3 (Augmented Avatar Representation) X 2 (Interaction Technique) multi-factorial design, manipulating the physicality of the pegs as a between-subjects factor, the type of augmented self-avatar representation, and the type of interaction technique used for object-manipulation as within-subjects factors. Results indicated that users were significantly more accurate when the pegs were virtual rather than physical because of the increased salience of the task-relevant visual information. From an avatar perspective, providing users with a reach envelope-extending representation, though useful, was found to worsen performance, while co-located avatarization significantly improved performance. Choosing an interaction technique to manipulate objects depends on whether accuracy or efficiency is a priority. Finally, the relationship between the avatar representation and interaction technique dictates just how usable mixed reality interactions are deemed to be.more » « less
-
Redirected walking techniques use rotational gains to guide users away from physical obstacles as they walk in a virtual world, effectively creating the illusion of a larger virtual space than is physically present. Designers often want to keep users unaware of this manipulation, which is made possible by limitations in human perception that render rotational gains imperceptible below a certain threshold. Many aspects of these thresholds have been studied, however no research has yet considered whether these thresholds may change over time as users gain more experience with them. To study this, we recruited 20 novice VR users (no more than 1 hour of prior experience with an HMD) and provided them with an Oculus Quest to use for four weeks on their own time. They were tasked to complete an activity assessing their sensitivity to rotational gain once each week, in addition to whatever other activities they wanted to perform. No feedback was provided to participants about their performance during each activity, minimizing the possibility of learning effects accounting for any observed changes over time. We observed that participants became significantly more sensitive to rotation gains over time, underscoring the importance of considering prior user experience in applications involving rotational gain, as well as how prior user experience may affect other, broader applications of VR.more » « less
-
This work explored how users’ sensitivity to offsets in their avatars’ virtual hands changes as they gain exposure to virtual reality. We conducted an experiment using a two-alternative forced choice (2-AFC) design over the course of four weeks, split into four sessions. The trials in each session had a variety of eight offset distances paired with eight offset directions (across a 2D plane). While we did not find evidence that users became more sensitive to the offsets over time, we did find evidence of behavioral changes. Specifically, participants’ head-hand coordination and completion time varied significantly as the sessions went on. We discuss the implications of both results and how they could influence our understanding of long-term calibration for perception-action coordination in virtual environments.more » « less
-
Walking through immersive virtual environments is one of the important parts of Virtual Reality (VR) applications. Prior research has established that users’ gait in virtual and real environments differs; however, little research has evaluated how users’ gait differs as users gain more experience with VR. We conducted experiments measuring novice and experienced subjects’ gait parameters in VR and real environments. Results showed that subjects’ performance in VR and Real World was more similar in the last trials than in the first trials; their walking dissimilarity in the start trials diminished by walking more trials. We found trial as a significant variable affecting the walking speed, step length, and trunk angle for both groups of users. While the main effect of expertise was not observed, an interaction effect between expertise and the trial number was shown. Trunk angle increased over time for novices but decreased for experts.more » « less
An official website of the United States government
